Keywords

Citizen science, informal learning, algorithms, automatization, education, privacy protection

Abstract

There is an increasing interest and growing practice in Citizen Science (CS) that goes along with the usage of websites for communication as well as for capturing and processing data and materials. From an educational perspective, it is expected that by integrating information about CS in a formal educational setting, it will inspire teachers to create learning activities. This is an interesting case for using bots to automate the process of data extraction from online CS platforms to better understand its use in educational contexts. Although this information is publicly available, it has to follow GDPR rules. This paper aims to explain (1) how CS communicates and is promoted on websites, (2) how web scraping methods and anonymization techniques have been designed, developed and applied to collect information from online sources and (3) how these data could be used for educational purposes. After the analysis of 72 websites, some of the results obtained show that only 24.8% includes detailed information about the CS project and 48.61% includes information about educational purposes or materials.

View infography

References

Asensio-Pérez, J.I., Dimitriadis, Y., Prieto, L.P., Hernández-Leo, D., & Mor, Y. (2014). From idea to VLE in half a day: METIS approach and tools for learning co-design. In Proceedings of the Second International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 741-745). ACM. https://doi.org/10.1145/2669711.2669983

Link DOI | Link Google Scholar

Bickford, D., Posa, M.R.C., Qie, L., Campos-Arceiz, A., & Kudavidanage, E.P. (2012). Science communication for biodiversity conservation. Biological Conservation, 151(1), 74-76. https://doi.org/10.1016/j.biocon.2011.12.016

Link DOI | Link Google Scholar

Bonney, R., Cooper, C.B., Dickinson, J., Kelling, S., Phillips, T., Rosenberg, K.V., & Shirk, J. (2009). Citizen science: A developing tool for expanding science knowledge and scientific literacy. BioScience, 59(11), 977-984. https://doi.org/10.1525/bio.2009.59.11.9

Link DOI | Link Google Scholar

Bonney, R., Phillips, T. B., Ballard, H.L., & Enck, J.W. (2016). Can citizen science enhance public understanding of science? Public Understanding of Science, 25(1), 2-16. https://doi.org/10.1177/0963662515607406

Link DOI | Link Google Scholar

Bowser, A., Brenton, P., Stevenson, R., Newman, G., Schade, S., Bastin, L., Parker, A., & Oliver, J. (2017). Citizen Science Association Data & Metadata Working Group: Report from CSA 2017 and Future Outlook. European Commision. https://bit.ly/3IS85Sl

Link Google Scholar

Calvera-Isabal, M., Varas, N., & Santos, P. (2021). Computational techniques for data science applied to broaden the knowledge between citizen science and education. In D.G. Sampson, D. Ifenthaler, & P. Isaías (Eds.), Proceedings of the 18th International Conference on Cognition and Exploratory Learning in the Digital Age (CELDA 2021) (pp. 219-226). IADIS Press. https://doi.org/10.1007/978-3-030-65657-7

Link DOI | Link Google Scholar

Chan, K.K.H., & Yung, B.H.W. (2018). Developing pedagogical content knowledge for teaching a new topic: More than teaching experience and subject matter knowledge. Research in Science Education, 48(2), 233-265. https://doi.org/10.1007/s11165-016-9567-1

Link DOI | Link Google Scholar

Clarivate analytics (Ed.) (2022). Web of Science Core Collection Help. https://bit.ly/3ts2lZl

Link Google Scholar

Derave, T., Sales, T.P., Gailly, F., & Poels, G. (2020). Towards a reference ontology for digital platforms. In G. Dobbie, U. Frank, G. Kappel, S.W. Liddle, H.C. May (Eds.), Conceptual modeling. ER 2020. Lecture notes in computer science (pp. 289-302). Springer. https://doi.org/10.1007/978-3-030-62522-1_21

Link DOI | Link Google Scholar

Diouf, R., Sarr, E.N., Sall, O., Birregah, B., Bousso M., & Mbaye, S.N. (2019). Web Scraping: State-of-the-Art and Areas of Application. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 6040-6042). https://doi.org/10.1109/BigData47090.2019.9005594

Link DOI | Link Google Scholar

Djonko-Moore, C.M., Leonard, J., Holifield, Q., Bailey, E.B., & Almughyirah, S.M. (2018). Using culturally relevant experiential education to enhance urban children’s knowledge and engagement in science. Journal of Experiential Education, 41(2), 137-153. https://doi.org/10.1177/1053825917742164

Link DOI | Link Google Scholar

European Union (Ed.) (2010). Charter of fundamental rights of the European Union. Official Journal of the European Union C83, 53, 380. https://bit.ly/3PFo605

Link Google Scholar

Fraisl, D., Campbell, J., See, L., Wehn, U., Wardlaw, J., Gold, M., Moorthy, I., Arias, R., Piera, J., Oliver, J.L., Masó, J., Penker, M., & Fritz, S. (2020). Mapping citizen science contributions to the UN sustainable development goals.?Sustainability Science,?15(6), 1735-1751. https://doi.org/10.1007/s11625-020-00833-7

Link DOI | Link Google Scholar

Gruschka, N., Mavroeidis, V., Vishi, K., & Jensen, M. (2018). Privacy issues and data protection in big data: A case study analysis under GDPR. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 5027-5033). IEEE. https://doi.org/10.1109/BigData.2018.8622621

Link DOI | Link Google Scholar

Hiller, S.E., & Kitsantas, A. (2014). The effect of a horseshoe crab citizen science program on middle school student science performance and STEM career motivation. School Science and Mathematics, 114(6), 302-311. https://doi.org/10.1111/ssm.12081

Link DOI | Link Google Scholar

Kasgar, A.K, Agrawal, J., & Sahu, S. (2012). New modified 256-bi MD5 algorithm with SHA. Compression Function. International Journal of Computer Applications, 42(12), 47-51. https://doi.org/10.5120/5748-7956

Link DOI | Link Google Scholar

Kobori, H., Dickinson, J.L., Washitani, I., Sakurai, R., Amano, T., Komatsu, N., Kitamura, W., Takagawa, S., Koyama, K., Ogawara, T., & Miller-Rushing, A.J. (2016). Citizen science: a new approach to advance ecology, education, and conservation. Ecological Research, 31(1), 1-19. https://doi.org/10.1007/s11284-015-1314-y

Link DOI | Link Google Scholar

Kolay, S., D'Alberto, P., Dasdan, A., & Bhattacharjee, A. (2008). A larger scale study of robots. txt. In Proceedings of the 17th international conference on World Wide Web (pp. 1171-1172). https://doi.org/10.1145/1367497.1367711

Link DOI | Link Google Scholar

Li, Y., & Manoharan, S. (2013). A performance comparison of SQL and NoSQL databases. In 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM) (pp. 15-19). IEEE. https://doi.org/10.1109/PACRIM.2013.6625441

Link DOI | Link Google Scholar

Lin-Hunter, D.E., Newman, G.J., & Balgopal, M.M. (2020). Citizen scientist or citizen technician: A case study of communication on one citizen science platform. Citizen Science: Theory and Practice, 5(1). https://doi.org/10.5334/cstp.261

Link DOI | Link Google Scholar

Massa, N., Dischino, M., Donnelly, J.F., & Hanes, F.D. (2011). Creating real-world problem-based learning challenges in sustainable technologies to increase the STEM Pipeline. In 2011 ASEE Annual Conference & Exposition (pp. 22.397.1 - 22.397.19). https://doi.org/10.18260/1-2--17678

Link DOI | Link Google Scholar

Parvez, M.S., Tasneem, K.S.A., Rajendra, S.S., & Bodke, K.R. (2018). Analysis of different web data extraction techniques. In 2018 International Conference on Smart City and Emerging Technology (ICSCET) (pp. 1-7). IEEE. https://doi.org/10.1109/ICSCET.2018.8537333

Link DOI | Link Google Scholar

Ponti, M., Hillman, T., Kullenberg, C., & Kasperowski, D. (2018). Getting it right or being top rank: Games in citizen science. Citizen Science: Theory and Practice, 3(1). https://doi.org/10.5334/cstp.101

Link DOI | Link Google Scholar

Roche, J., Bell, L., Galvão, C., Golumbic, Y. N., Kloetzer, L., Knoben, N. Laakso, M., Lorke, J., Mannion, G., Massetti, L., Mauchline, A., Pata, K., Ruck, A., Taraba, P., & Winter, S. (2020). Citizen science, education, and learning: challenges and opportunities. Frontiers in Sociology, 5, 613814. https://doi.org/10.3389/fsoc.2020.613814

Link DOI | Link Google Scholar

Roldán-Álvarez, D., Martínez-Martínez, F., & Martín, E. (2021). Citizen science and open learning: A Twitter perspective. In 2021 International Conference on Advanced Learning Technologies (ICALT) (pp. 6-8). IEEE. https://doi.org/10.1109/ICALT52272.2021.00009

Link DOI | Link Google Scholar

Saddiqa, M., Larsen, B., Magnussen, R., Rasmussen, L.L., & Pedersen, J.M. (2019). Open data visualization in Danish schools: A case study. Complex Systems Informatics and Modeling Quarterly, 21, 1-20. https://doi.org/10.24132/CSRN.2019.2902.2.3

Link DOI | Link Google Scholar

Sanz, F., Gold, M., & Mazzonetto, M. (2019). D2.3: Platform functionality requirements & specification report. Zenodo. https://doi.org/10.5281/zenodo.3612808

Link DOI | Link Google Scholar

Stocklmayer, S.M., Rennie, L.J., & Gilbert, J.K. (2010). The roles of the formal and informal sectors in the provision of effective science education. Studies in Science Education, 46(1), 1-44. https://doi.org/10.1080/03057260903562284

Link DOI | Link Google Scholar

Storksdieck, M., Shirk, J.L., Cappadonna, J.L., Domroese, M., Göbel, C., Haklay, M., Miller-Rushing, A.J., Roetman, P., Sbrocchi, C., & Vohland, K. (2016). Associations for citizen science: Regional knowledge, global collaboration. Citizen Science: Theory and Practice, 1(2). https://doi.org/10.5334/cstp.55

Link DOI | Link Google Scholar

Veeckman, C.M., Talboom, S., Gijsel, L., Devoghel, H., & Duerinckx, A. (2019). Communicatie bij burgerwetenschap: Een praktische handleiding voor communicatie en betrokkenheid bij citizen science. SCIVIL. https://bit.ly/3PKQz50

Link Google Scholar

Vohland, K., Land-Zandstra, A., Ceccaroni, L., Lemmens, R., Perelló, J., Ponti, M., Samson, R., & Wagenknecht, K. (Eds.) (2021). The science of citizen science. Springer Nature. https://doi.org/10.1007/978-3-030-58278-4

Link DOI | Link Google Scholar

Warin, C., & Delaney, N. (2020). Citizen science and citizen engagement. Achievements in Horizon 2020 and recommendations on the way forward. European Commision. https://doi.org/10.2777/05286

Link DOI | Link Google Scholar

Crossmark

Technical information

Received: 30-05-2022

Revised: 27-06-2022

Accepted: 19-07-2022

OnlineFirst: 30-10-2022

Publication date: 01-01-2023

Article revision time: 28 days | Average time revision issue 74: 40 days

Article acceptance time: 50 days | Average time of acceptance issue 74: 69 days

Preprint editing time: 171 days | Average editing time preprint issue 74: 194 days

Article editing time: 216 days | Average editing time issue 74: 239 days

Metrics

Metrics of this article

Views: 2541

Abstract readings: 2173

PDF downloads: 368

Full metrics of Comunicar 74

Views: 27143

Abstract readings: 22615

PDF downloads: 4528

Cited by

Cites in Web of Science

Currently there are no citations to this document

Cites in Scopus

Currently there are no citations to this document

Cites in Google Scholar

Currently there are no citations to this document

Download

Alternative metrics

How to cite

Calvera-Isabal, M., Santos, P., Hoppe, H., & Schulten, C. (2023). How to automate the extraction and analysis of information for educational purposes. [Cómo automatizar la extracción y análisis de información sobre ciencia ciudadana con propósitos educativos]. Comunicar, 74, 23-35. https://doi.org/10.3916/C74-2023-02

Share

           

Post Office Box 527

21080 Huelva (Spain)

Administration

Editorial office

Creative Commons

This website uses cookies to obtain statistical data on the navigation of its users. If you continue to browse we consider that you accept its use. +info X